

Ing. Néstor Mauricio Caro Sánchez

Gesture classification based on

electromyography

Department of Cybernetics

Project supervisor: Ing. Petr Posik, Ph.D.

Prague

May 2016

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Néstor C a r o

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Diploma Thesis: Gesture Classification Based on Electromyography

Guidelines:
The purpose of the work is to identify hand gestures based in the Electromyography raw
signals provided from the Myo armband. First replicating the gesture dictionary provided
by the manufacturer and then expanding the amount of recognizable gestures through
various feature extraction and pattern recognition techniques.

1. Learn the principles of electromyography with relation to the Myo armband device.
2. Study relevant methods of signal processing, and machine learning.
3. Use the device SDK to create a training data set of signals and their correct
 classification.
4. Create and evaluate a classifier reproducing the behavior of the software provided with
 the device.
5. Expand the vocabulary of gestures, collect data for them and label them manually.
6. Train and evaluate a new classifier for the expanded gesture set.

Bibliography/Sources:
[1] Xing, K., Yang, P., Huang, J., Wang, Y., & Zhu, Q. (2014). A real-time EMG pattern recognition
 method for virtual myoelectric hand control. Neurocomputing, 136, 345-355.
[2] Pan, L., Zhang, D., Liu, J., Sheng, X., & Zhu, X. (2014). Continuous estimation of finger joint
 angles under different static wrist motions from surface EMG signals. Biomedical Signal
 Processing and Control, 14, 265-271.
[3] Boyali, A., & Hashimoto, N. (2016). Spectral Collaborative Representation based Classification
 for hand gestures recognition on electromyography signals. Biomedical Signal Processing and
 Control, 24, 11-18.

Diploma Thesis Supervisor: Ing. Petr Pošík, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 5, 2016

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have listed

all sources of information used within accordance with the methodical instructions for

observing ethical principles in the preparation of university theses.

Prague, date

 Signature

3

Abstract

The purpose of the work is to identify different hand poses based in the

Electromyography raw signals provided from a Myo armband, using various signal

processing, feature extraction and pattern recognition techniques. First we will replicate

the gesture dictionary provided by the manufacturer, and then we will explore different

hand poses that are compatible with the basic dictionary of gestures, and then

expanding the amount of recognizable gestures for the tested classifiers.

Table of Contents

List of Abbreviations ...7

1 Introduction ...8

2 Problem description and related work ..9

2.1 Economic prosthesis, enhanced evolution... 10

2.1.1 Mechatronic Achievements ... 10

2.1.2 Different interfaces ... 11

2.1.3 Cheaper interfaces ... 12

2.2 DARPA’s Revolutionizing Prosthetics challenge .. 13

2.2.1 Accepting the challenge ... 13

2.2.2 Taking the challenge far beyond, feedback and enhanced interfaces 14

2.3 Myo armband ... 15

2.3.1 Myo Armband Manager ... 16

2.4 The magic behind the robot, Machine Learning ... 17

3 Physiological theoretical frame ... 19

3.1 Neurobiological principles .. 19

3.2 Electromyography (EMG) principles .. 21

3.2.1 Definition of EMG .. 21

4 Experimental setup ... 22

4.1 Data acquisition .. 22

4.1.1 Hardware: Myo Armband .. 22

4.1.2 Myo armband placement .. 23

4.1.3 SDK ... 24

4.1.4 SDK to Matlab wrapper .. 25

4.1.5 Labeling ... 27

4.2 Data preprocessing .. 31

4.2.1 Gather and concatenate all available data .. 31

4.2.2 Windowing ... 31

4.2.3 Features of EMG ... 32

4.2.4 PCA ... 34

5

4.3 Modeling .. 35

4.3.1 Decision Trees ... 35

4.3.2 Random Forest .. 35

4.3.3 Error Correcting Output Codes (ECOC) ... 36

4.3.4 K Nearest Neighbors (KNN) ... 36

4.3.5 Accuracy definition ... 37

4.4 Post processing ... 37

4.4.1 Sliding window filter ... 38

4.4.2 Maximizing accuracy .. 39

5 Experimental Results .. 39

5.1 Experiments with 1st Matlab wrapper, acquisition at 10Hz 39

5.1.1 Decision Tree ... 40

5.1.2 Random Forest .. 40

5.1.3 Error Correcting Output Codes (ECOC) ... 41

5.1.4 K Nearest Neighbors (KNN) ... 41

5.1.5 KNN: Using new accuracy A2 and modifying the weight of “Rest” pose41

5.1.6 KNN: Expanding the dictionary ... 42

5.2 Experiments with 2nd Matlab wrapper ... 42

5.2.1 1st Session, facing 200Hz and post processing .. 43

5.2.2 2nd Session, evaluating previous models for new poses 44

6 Conclusions and future work proposals .. 50

7 REFERENCES ... 53

8 APPENDIX... 55

8.1 MATLAB wrapper code overview .. 55

8.2 Glove for automated accurate labeling ... 55

Table of Figures

Figure 1 – 3D printable hand .. 11

Figure 2 – Myo armband, graphical concept .. 12

Figure 3 – DARPA modular prosthesis in pieces ... 13

Figure 4 – DARPA prosthetic arm, extrinsic hand vs. intrinsic hand .. 14

Figure 5 – DARPA prosthetic arm, powered with 2 Myo armbands .. 15

Figure 6 – Myo Armband, hardware overview ... 16

Figure 7 – Myo Armband’s, hand pose dictionary... 17

Figure 8 – Brain somatosensory cortex, before and after amputation .. 20

Figure 9 – Block diagram for the experimental setup ... 22

Figure 10 – Myo armband placement .. 23

Figure 11 – Markers used for attempting placing the Myo in the same place 24

Figure 12 – SDK data flow from physical device to an application .. 25

Figure 13 – Gyroscopes, Accelerometers and EMG signals. Myo detecting “Fist” pose ... 26

Figure 14 – Interactive labeler, and signal samples for several poses .. 28

Figure 15 – Hand poses used in the experiments. ... 29

Figure 16 – “Fist” sample signal, releasing pose signals pointed with red markers 30

Figure 17 – 3D PCA scores of basic dictionary with acquisition frequency of 10Hz 34

Figure 18 – Filter window size influence in classifier’s results ... 38

Figure 19 – 3D PCA scores of basic dictionary with acquisition frequency of 200Hz 43

Figure 20 – KNN: Ground truth VS raw classification .. 44

Figure 21 – Random Forest: testing base dictionary plus “Elder” pose 46

Figure 22 – Random Forest: testing base dictionary plus “Voor” and “Tiger” poses 46

Figure 23 – Random Forest: testing base dictionary plus “Voor” and “Elder” poses 47

Figure 24 – 10 Nearest Neighbors: testing base dictionary plus “Voor” 48

Figure 25 – 5 Nearest Neighbors test: base dictionary plus “Voor” and “Elder” poses . 49

7

List of Abbreviations

APL – Applied Physics Laboratory

BCI – Brain Computer Interfaces

CNS – Central Nervous System

CTU – Czech Technical University

DARPA – Defense Advanced Research Projects Agency

EMG – Electromyography

EEG – Electro Encephalography

MUP – Motor Unit Potential

PCA – Principal Component Analysis

PLP – Phantom Limb Pain

PNS – Peripheral Nervous System

SDK – Software Development Kit

1 Introduction

In this document, we will learn the principles of Electromyography (EMG) for identifying

a set of hand gestures, using various feature extraction and pattern recognition

techniques. The relevancy of such project lies in its possible application as the input

flow of information for a prosthetic device using EMG and machine learning, for

decoding the patient’s movement intention into a dictionary of hand poses. A special

emphasis has to be done in the word decoding, since using the same nervous

pathways used by a limb prior the amputation for the control of a prosthesis, reduce

the potentially negative effects of aberrant neuroplasticity and, in consequence a

treatment for Phantom Limb Pain (PLP).

Neuroplasticity is the capacity of the brain, Central Nervous System (CNS) and

Peripheral Nervous System (PNS) to reconfigure after a traumatic event in order to

compensate for the amputation, by improving the somatosensory representation and

motor system reaction. However, the physical reconfiguration of nervous tissues, can

sometimes lead to the aberrant growing of neuromas (Tumor growth of a nerve),

which is one of the main causes of PLP.

This text is organized in the following way. In chapter 2 we will introduce the reader

to related works involving the use of EMG, machine learning, cybernetic prosthesis

and the Myo armband itself, in order to provide some state of the art and proof of

the validity of this work.

In chapter 3, we will explain some physiological principles for understanding the

problem this work attempts to treat, first explaining some neurobiological principles

behind bidirectional interfaces of cybernetic hand prostheses, allowing the reader to

understand the context and purpose of this thesis work. Here we will explain, how the

nerve tissues transform through time after an amputation, its implications, and how

the use of certain types of prosthetics can reduce the problematic PLP. Later, we will

explain the principles of EMG relevant for the development of our solution. Where we

will see how a thought is translated into a mechanical movement by our body, the

mechanisms and processes implied. And a description of the methods used to

measure, record and process the action potentials generated by the contraction of

muscles. Also, some mathematical manipulation to extract additional features from

the raw signals acquired.

In chapter 4, we will show an overview of the final layout of the system developed

for satisfying our objectives, followed by a detailed description of each phase. In this

section we will show in detail the hardware and software used and developed for the

purpose of the thesis. With the use of block diagrams, schematics and references to

the codes developed, we will illustrate how the Myo armband was used, the interface

to Matlab, the data preprocessing and acquisition protocols, also the principles and

functions of the different types of classifiers used for the machine learning part of

9

this work. Also, we will provide a description of the methodology followed for each

experiment performed, organized by relevancy and context.

In chapter 5, we will find the experimental results of all the experiments done, using

different acquisition frequencies for the EMG signals, different methods, approaches

and classifiers. Also showing problems and solutions that grew during the

experimentation and tuning of the different classifiers, and part of the empirical

knowledge gained during this process.

In chapter 6, we will see the conclusions harvested from the whole experience and,

we will propose possible future works using the results of this thesis as a starting

point, towards cybernetic prosthesis capable of smooth adaptation to the patients,

with reduction of aberrant neuroplasticity and PLP. And finally, in the appendixes, the

reader will find useful information of the devices engineered for solving the issues

risen in the development of this work.

2 Problem description and related work

Prosthetics have evolved drastically since the early wooden limbs of XV century, to

the amazing pieces of Bio Mechatronic engineering we see today, capable of almost

human like movements, replicating their precision and dexterity.

However, aside from the cybernetic and mechatronic development, the bottleneck of

prosthetics in the scientific and industrial community has been the link between man

and machine. Progressively seeking the ultimate cyborg interface, a bidirectional link

allowing both control of the prosthesis and feedback from it.

In order to develop cybernetic prostheses with interfaces to the nervous system, there

needs to be a classifier estimating the meaning of the biological information coming

from the patient. However, each case of amputation and patient represent unique

physiognomies, thus for increasing the proportion of correct classification, the

designers and developers of prosthesis must have a broad interdisciplinary knowledge,

including a deep understanding in neurobiology: from post-amputation plastic

reorganization characteristics and mechanisms, to different nervous system levels [1].

In addition, prosthetics designers should aim for functional restoration of neural

pathways, supporting the reorganization of the brain, by properly guiding

neuroplasticity in a convenient manner to bring back to life the same neural pathways

used by the organism prior the amputation, and convert them to targets for direct

neural interfaces. This can be achieved by artificial sensory feedback and creating

prosthesis that decode the motor intention of the user, using machine learning. The

latter is the exact problem we want to solve with this work. However, this thesis knows

its limitations and won’t go as far as creating a prosthesis, so we will focus in

decoding the motor intention of the user, using EMG and machine learning. Thus

preparing the road for a low cost prosthesis capable to deal with this problem,

hopefully a future master or PhD thesis of the CTU.

Along this section we will describe relevant technological developments for cybernetic

prosthesis, organized in different areas, including low cost approaches and the state

of the art project developed by the Defense Advanced Research Projects Agency

(DARPA) of US, which currently is revolutionizing prosthetics by integrating all the right

components together.

2.1 Economic prosthesis, enhanced evolution.

2.1.1 Mechatronic Achievements

Until not long ago, the price for acquiring a prosthetic device grew exponentially

according its sophistication. Allowing the existence of a multi-billionaire industry,

feeding on the sorrow and limitations of many by maintaining ridiculously high prices,

focusing on very wealthy clients and organizations.

Recently, the fast evolution of 3D printing and its decreasing prices, summed with

visionary and altruist efforts of scientists like Easton LaChappelle that at the young

age of 17, gave a hard strike to the old prosthetic industry, by open sourcing the

model of a prosthetic 3D printable hand (figure 1). Turning a product usually found

in the market around the price of $80.000 US dollars, into a device able to be home

produced around $350 US dollars.

11

Figure 1 – 3D printable hand

 Source: http://theroboarm.com/

Whether this is not the most sophisticated prosthesis of this time, it must be

highlighted how this kind of initiatives had encouraged the involvement of many new

institutions, scientists, companies and hobbyist, resulting in a fast evolving industry.

2.1.2 Different interfaces

There are 5 main approaches to classify prosthesis according to their type of

interaction with the patient [1]:

- Mechanical Interfaces: Powered by the body or the stump, which are usually

limited to one or two degrees of freedom.

- Myoelectric interfaces using non-homologous muscles: Which are based in EMG,

from both residual muscles in the amputated area, and non-homologous muscles,

where the user is forced to perform unnatural expressions of movement in order to

move the prosthesis.

- Myoelectric interfaces using homologous muscles: Which is only possible when

the muscles used to move the amputated area are still available, which is perceived

by the user in a more natural and user-friendly way.

- Non-invasive neural interfaces: Such as superficial EEG controlled devices, which

deal with the major problem of noise.

- Invasive neural interfaces: Mostly known as BCI. They require the insertion of

electrodes directly in the cortex or the nerves, which solves the noise problem from

the previous kind of prosthesis but requires a surgical intervention prior to use.

In addition, recently an invasive approach called targeted reinnervation was developed,

which transfers sensor and motor fibers of residual truncated nerves from the stump

into another area where the EMG is easier to record. Inducing surgically a myoelectric

interface using homologous muscles, even if it’s not anatomically possible.

For the sake of space and relevancy, we will only deepen the myoelectric interfaces

using homologous muscles, since it is the approach chosen for this work. Now, with

a cheap and accurate effector just as the one shown in the previous section, a robust

and equally cheap signal acquisition device and control input are required to exploit

the full potential of this economic efforts.

2.1.3 Cheaper interfaces

In a similar way to the prosthetic development, until not long ago a reliable EMG

acquisition device was both costly and bulky, and given the stochastic nature of this

method, several filtering techniques were needed to be able to use EMG in any

practical application. However, in 2013 Thalmic Labs, a Canadian company, born from

a crowd funded startup released to the market the Myo armband (figure 2), a dry

EMG acquisition device originally intended to be used as a computer gadget. Allowing

the user to scroll, control presentations, etc. Nevertheless, the company was aware

of the great potential behind a cheap and robust EMG acquisition device, thus

providing full access to the device software.

Figure 2 – Myo armband, graphical concept

Source: developerblog.myo.com/raw-uncut-drops-today/

13

From its release to the date, hundreds of different developments based on this device

have been reported and open sourced for the growing community of developers and

users. Details of this device will be exhaustively explained in the fourth part of this

thesis work.

2.2 DARPA’s Revolutionizing Prosthetics challenge

2.2.1 Accepting the challenge

From 2005 to 2009 DARPA took the challenge to develop the world’s most advanced

prosthetic limb; having strength, sensation, weight, comfort and appearance of a native

human limb, and in addition it had to be controlled using the patient’s mind. They

succeeded by having an interdisciplinary team of more than 100 engineers, scientists,

researchers and clinicians from academic, government and industrial institutions [2].

Each of the contributors was subdivided in several areas of expertise. Engineering

specialties included systems, electrical, mechanical, wireless communications, power-

sensitive applications, human factors, cosmesis, reliability, manufacturability, and

project and program management. Scientific specialties were neuroscience, sensory

feedback and haptics, neural motor decoding, neural stimulation, and research studies.

Clinical specialties were surgery, clinical/research prosthetics, physical therapy,

occupational therapy and human subject research.

The final product was a modular prosthesis (figure 3), able to adapt to numerous

different kinds of amputations, and allowing the easy replacement of small parts in

case of malfunction, or upgrade. Rather than depending in the prosthesis as a whole.

Figure 3 – DARPA modular prosthesis in pieces

Source: [2]

Additionally, since the motors for the finger flexion were located in the forearm,

DARPA developed a variation of the prosthesis to fit transradial amputees, which by

definition still have their forearm. This prototype would have the motors built in the

palm of the hand (figure 4).

Figure 4 – DARPA prosthetic arm, extrinsic hand vs. intrinsic hand

Source: [2]

For controlling this devices, DARPA originally explored different kinds of custom-

designed neural interfaces, ranging from electrode arrays surgically implanted both in

the brain and in muscles and nervous tissue to micro coils for wireless power and

data transmission.

2.2.2 Taking the challenge far beyond, feedback and enhanced interfaces

After the unanimous success of the prototypes developed by the Revolutionizing

Prosthetics challenge, DARPA continued investing in refining the prosthesis for 3 years

until 2012, when trials on human patients started. 35 volunteer amputees participated

for the testing and provided design feedback for the development of the Gen-3 Arm

System by DEKA Integrated Solutions Corporation, one of two primary performers on

the Revolutionizing Prosthetics program [3].

In 2015 DARPA claimed to have closed the circuit for bidirectional communication by

providing sensory feedback to a man who has been paralyzed for more than a decade

as a result of a spinal cord injury. They solved this puzzle with an invasive solution,

placing electrode arrays in the sensory cortex of the patient (brain region responsible

for identifying tactile sensations such as pressure). Then they linked to a hand

prosthesis developed by the Applied Physics Laboratory (APL) at Johns Hopkins

University, which contains torque sensors that can detect when pressure is being

applied to any of its fingers, and can convert them into electrical signals that would

be interpreted as sensations by the sensory cortex [4].

At the end of the same year and beginning 2016, the APL released footage and

scarce information about their latest achievement, which for the surprise of the author

15

was using 2 Myo armbands. Their patient was subject to various surgeries, procedures

and extensive training sessions to allow the intuitive control of the latest DARPA

prosthesis with more than 22 DOF, having the amputation above the elbow. As shown

in the following figure.

Figure 5 – DARPA prosthetic arm, powered with 2 Myo armbands

Source: http://www.jhuapl.edu/newscenter/pressreleases/2016/160112.asp

Among the surgeries done to the patient were: osseointegration, which consisted in

attaching a mount for the prosthesis device directly to his bone, which solves one of

the main issues of wearing a prosthesis; comfort. The second surgery was the re

innervation procedure mentioned earlier in this section, deploying several nerve and

muscular tissues in his residual upper arm, making the amount of EMG data acquired

by the Myo armbands to be of substantial importance, since they were carrying more

information than a normal arm [5].

2.3 Myo armband

Myo is a device designed for detecting a set of poses and events, based on EMG

readings and machine learning algorithms for classifying the muscular activity into a

set of predefined poses. It acquires the raw EMG signals in real time, using dry

platinum electrodes. Myo has 8 pods, each acquiring independent signals along a

bracelet (Figure 6) and streaming the acquired data through the central pod (the one

with the logo) using Bluetooth communication, to a computer. Then, the software from

Thalmic Labs will process the signals to detect and determine the arm wearing the

device, the orientation of the Myo and a set of fixed poses, also allowing intuitive

linking to other apps or functions within the pc, whether using their application, or

writing simple codes in lua programming language.

Figure 6 – Myo Armband, hardware overview

Source: https://developer.thalmic.com/docs/api_reference/platform/getting-

started.html

Myo armband was created out of a crowd funding back in 2013, and it was originally

intended to be used as an external controller for computers. Allowing the user to

control the mouse, scroll a page, control presentations, etc. However, the founders

of the company were aware of the great potential behind a cheap and robust EMG

acquisition device, but they were also aware of their limitations as a newborn company.

Therefore, they released an SDK allowing full access to the hardware of the Myo,

leading to a deep interaction with the device for any kind of application.

Since the release of the SDK, hundreds of developers have used their creativity to

control and interface with a broad kind of devices, software and platforms.

Revolutionizing the EMG application possibilities forever.

2.3.1 Myo Armband Manager

This application is the bridge between the device and the computer, since the Myo

itself is only a data acquisition device. The hand gesture classification is done by the

manager, using the computer’s resources, and the identified hand pose is displayed

in the right lower corner of the screen with the symbols seen in the following figure.

17

Figure 7 – Myo Armband’s, hand pose dictionary

Source: http://theburningmonk.com/2014/10/myo-first-day-of-happy-hacking/

Additionally, the Myo can be manually calibrated from this program, in order to

enhance the sensitivity of the classifier. Any application developed using Myo must

use the Armband Manager as an intermediate step for gathering the data coming

from the device.

2.4 The magic behind the robot, Machine Learning

Machine learning is one of the few common techniques seen among all the published

approaches for cybernetic prosthesis, given its power to classify and learn different

behaviors or clusters of information. However, given the broad amount of methods

available for machine learning, the following table was extracted from a review article

summarizing the results of many researches aimed to the analysis of EMG classification

in the domain of neuromuscular pathology [6], the table was further improved by the

addition of results involving machine learning approaches for movement and pose

pattern recognition, easily identifiable by the bold italic font. In the table, Ns is number

of subjects and Nm is number of measurements.

Year Technique Ns(Nm) Accuracy

(%)

Artificial neural Networks

1992 Self-organizing feature map (SOFM) 114 76-83

1995 Integration of parametric pattern recognition algorithm

(PPR) and artificial neural network (ANN)

44 80-90

1996 SOFM and learning vector quantization (LVQ) 50 60-80

1998 Modular ANN 40(800) 79.6

1999 SOFM, LVQ and statistical methods based on Euclidean

distance

(1213) 90

2004 Continuous wavelet transform (CWT) and a multi-

channel ANN

13(260) -

2005 Multi-layer perceptron (MLP) 12 91.6

2006 Wavelet-based neural network (WNN) (1200) 90.7

2007 Radial basis networks (RBN) and decision trees 62(365) 89

2012 SOFM and LVQ 11 97.6

2013 Principal component analysis (PCA) and probabilistic

neural network (PNN)

12 68-94.3

Fuzzy

2001 Fuzzy logic (29) 88.4

2006 Adaptive fuzzy k-NN classifier (AFNNC) (11) 96.6

2012 Fuzzy logic 97 97

ANN hybrids

1996 Combined ANN and genetics-based machine learning

(GBML) models

34 80

2004 Fuzzy integral of multiple ANN 80 88.58

2010 Neuro-fuzzy system (NFS) 177 90

Support Vector Machines

2002 Support vector machine (SVM) with one against one

training algorithm

(231) 89

2005 SVM 59 92.3

2009 Multiclass SVM 12 100

2010 Binary SVM 12 100

2010 Fuzzy support vector machine (FSVM) 12 99.6

2012 SVM with wavelet technique for feature extraction 300 99.4

2012 FSVM classifier combined with statistical features

extracted

From discrete wave transform (DWT)

27 97.67

2013 Hybridization of the particle swarm optimization (PSO)

and SVM

27 96.75

2014 SVM (1vs1-1vsAll) with wavelet packet transform (WPT)

[27]

- 98.21-

98.39

Others

1995 Principle component analysis and multivariate

discriminant algorithm

302(682

8)

70.4-76.5

2008 Bayesian aggregation 57 88.7

2012 Decision tree 27 96.33-

96.50

2014 Linear Discriminant Analysis (LDA) and fourteen state-

space model [7]

7(56) 93.82

2014 Principal Component Analysis (PCA) vs. Common Spatial

Pattern (CSP) [8]

21(168) 88.1vs89.

35

2015 Spectral Collaborative Representation [9] - 98.34

Whether neuromuscular pathology is not directly related to the field of prosthetics, it

deals directly with the analysis of abnormal EMG readings, just as what you could

expect from an amputee’s residual muscles.

19

3 Physiological theoretical frame

3.1 Neurobiological principles

We will introduce the reader to some neurobiological principles behind bidirectional

interfaces of cybernetic hand prostheses, in order to give context and purpose to this

thesis work. Showing the transformations in the body after an amputation occurs and

how prosthetics can influence such transformation.

After an amputation, the nervous system experience changes derived from the sensory

deprivation of the missing limb, due to the well-studied plasticity of the brain and the

nervous system. Neural rearrangement following a limb amputation occurs as a form

of compensation from the sensory deprivation, making the surrounding areas in the

brain more active and lowering their electrical threshold response. In general,

neuroplastic changes lead to improvements of the somatosensory representation and

motor system reaction, in an attempt to compensate for the amputation.

The cortical reorganization following the amputation occurs in 3 consecutive stages.

The first one, happens short after the amputation, unmasking existing neural

connections that were silent, in a form of contingency plan against the abrupt body

transformation. The second stage happens weeks to months after the amputation, in

which cortical areas deprived from peripheral input reorganize in order to express

new receptive fields from the adjacent or residual cortical areas, through

synaptogenesis and dendritic arborization of neurons. Finally, the third stage is the

stabilization of the new body configuration in the cortex that produce more stable

and sharpened receptive fields.

However, it has been proven the physical reconfiguration of the brain, CNS and PNS,

can sometimes be good and sometimes can lead to potentially negative effects of

aberrant neuroplasticity. With the growing of neuromas in the stump, bombarding the

nervous system with erratic stimulations, and the occupation of the sensory deprived

areas in the brain by adjacent body part images. As seen in figure 8, the Penfield

Homunculus illustrates a map of the somatosensory projections in the brain for each

part of the body; as the figure illustrates, after an arm amputation, brain tissue from

the face and the arm remains will occupy the missing hand’s cortex.

Figure 8 – Brain somatosensory cortex, before and after amputation

Source: Author

This phenomena, in addition to neuroma formation are the main reasons many

amputees develop PLP in response to the deeply traumatic experience of the

amputation, as first shown by Ramachandran [10] in his fascinating neuroscience

research of the brain, following his career and achievements around twenty years

ago.

PLP consists in the sensory impression of activity or pain in the missing limb, after

the amputation! Ranging from tickles to unbearable pain; if treated wrongly, this

sensation can persist for life in some patients. However, the use of prosthesis is

directly correlated to PLP diminution, depending of the frequency of use and type of

the device [11]. This could be further improved by associating the bidirectional

interface of a prosthesis with the same nervous pathways used by the original limb

prior the amputation. The most promising approaches aim at establishing a direct

connection with either the central or peripheral human nervous system by means of

invasive or noninvasive neural interfaces. Thus a prosthetic could be used as

neurorehabilitation tool and the level of CNS reorganization can be used as parameter

of effectiveness achieved by the prosthetic device and its interfaces, in restoring the

hand physiological functionality.

As mentioned before, prosthetics should aim functional restoration of neural pathways

by supporting the reorganization of the brain by properly guiding neuroplasticity in a

convenient manner to bring back to life the same neural pathways used by the

21

organism prior the amputation and convert them to targets for direct neural interfaces.

For doing so, a stable and consistent sensory feedback must come from the

prosthesis, and the device should decode the motor intention of the user, using

machine learning algorithms.

For achieving the aforementioned purpose, recording of EMG, EEG or

electrocorticography (ECoG) should be guided by a video-driven or mentally stimulated

imagination of different hand-wrist-fingers movements, in order to define the intuitive

patterns of the signals coming from motor fibers. Then, an intelligent interface should

enable the interpretation of the motor commands to be executed by the prosthetic

device. On the other hand, sensory feedback from the prosthesis must be introduced

in an invasive way directly into the nerves, because using alternative methods of

stimulation – as vibration for representing intensity of grasp – can lead to the

activation of different somatosensory areas of the brain, thus leading to neural

reorganization.

3.2 Electromyography (EMG) principles

3.2.1 Definition of EMG

EMG studies neuromuscular activity and muscular morphology, by measuring the action

potentials generated by the contraction of muscles, which can be recorded using

surface electrodes or by inserting electrodes directly into the muscle. The former is

known as Surface EMG (sEMG) and the latter Intramuscular EMG. In both cases, the

data is recorded using one electrode as reference, and 2 more as differential

measurements.

In order to generate muscle movements, electrical signals are passed from the brain

to one or more alpha-motor neurons, each one attached to hundreds or even

thousands of muscle fibers, causing their contraction while the neuron(s) remains

active. [1]

The summation of potentials produced by the alpha-motor neuron and the contraction

of all the affected muscular fibers, is known as Motor Unit Potential (MUP), and a

single muscle can contain many of them, all firing multiple times per second, giving

a stochastic nature to EMG. Therefore, only acquiring the MUP is not enough for

extracting useful information about the overall muscle activity, and we should define

several features based on the amplitude and frequency variations of the MUP in

limited time windows.

4 Experimental setup

As stated in previous sections of this work, our main purpose is to decode the motor

intention of the user, using EMG and machine learning. For doing so, we will use a

Myo armband as an EMG input device, further processing its raw information into

Matlab, and then train various classifiers for allowing the recognition of a defined set

of hand poses.

In the following diagram, we can appreciate an overall view of the entire data flow,

mechanisms and connections involved in the development of this project.

Figure 9 – Block diagram for the experimental setup

Source: Author

4.1 Data acquisition

4.1.1 Hardware: Myo Armband

As mentioned before, Myo is a device capable of acquiring raw EMG signals from 8

different locations across a bracelet in real time. The range of the acquired signals

is ±127mV and corresponds to the MUP of the measured area. In general, the Myo

armband provides two kinds of data, spatial data and gestural data.

Spatial data means the orientation and movement of the user's arm, in terms of a

quaternion that can be converted to other representations, like a rotation matrix or

Euler angles; and an acceleration vector representing the acceleration that the Myo

armband is undergoing at any given time.

23

Gestural data tells the application what the user is doing with their hands in the form

of one of several poses, and the EMG raw data used to determine the mentioned

poses and define which arm it is being worn on and which way it is oriented. Also,

an application can provide feedback to the user by issuing a vibration command.

Data is sent to a computer through Bluetooth communication to an application in

form of events, which identify the Myo armband sending the data and provide a

timestamp of the moment the event was received. In order to access the events and

data generated by the Myo, we will use the tools and codes provided by the SDK.

4.1.2 Myo armband placement

First we will describe some methods repeated every time we intended to acquire new

data, whether it is training or testing data the acquisition protocol will be the same.

It’s important to mention that, the only patient to be tested was the author, and

therefore discretion is advised to compare these results with other researches. Also,

it should be noted that all the previous codes were modified versions of the ones

provided by their respective creators. However, subsequent codes from this point

forward were completely made by the author of this thesis work.

In every data acquisition session, the Myo armband was placed in a healthy left arm,

trying to pay special care to place all the pods in the exact same position every

time, as shown in figure 10.

Figure 10 – Myo armband placement

Source: Author

However, despite many efforts and strategies like the one shown in the figure 11, the

acquired EMG signals from each pod would change significantly every time the Myo

armband was removed and worn again. If the pods were to be moved even few

millimeters, this leaded to corrupted and misleading data for the classifiers. Therefore,

data recorded in different sessions is unusable together, thus defining an important

limitation of our work; training and testing data should be acquired in the same

session.

Figure 11 – Markers used for attempting placing the Myo in the same place

Source: Author

4.1.3 SDK

This is a compilation of binary executable, libraries, drivers, headers and

documentation necessary to interact with the Myo armband; along with sample codes

demonstrating the implementation of the former files, which can be used as templates,

for developing a wide variety of apps.

To enable communication with the Myo in a physical level, the SDK contains a library

called libmyo which parses the data from the Bluetooth of the device into a C API,

allowing applications in various programming languages to access, both raw data, and

the built in classifier of the device. As illustrated in the following diagram:

25

Figure 12 – SDK data flow from physical device to an application

Source: https://developer.thalmic.com/docs/api_reference/platform/the-sdk.html

The SDK, also provides bindings for C++. Allowing the access of the features seen in

the following table, by the definition of classes [13].

Class name Description

myo::Hub Used by the app to use the SDK

myo::Myo Represents the Myo armband

myo::Pose Poses identified by the Myo

myo::Quaternion Object representing orientation

myo::Vector3 Object representing acceleration vector

myo::DeviceListener Receives new events

4.1.4 SDK to Matlab wrapper

Using the C++ bindings, and the required libraries and headers included in the Myo

SDK, we can parse the data from the spatial and gestural data from the Myo directly

to Matlab for further processing. Myo Armband Manager, the software from Thalmic

Labs, must be running always during the execution of subsequent codes.

There were 2 different Matlab wrappers used during the development of this work.

The first one allowed the acquisition of EMG raw data for a fixed time of acquisition

of 10 seconds at a frequency of refreshing of 10Hz [14], which was used for the

acquisition of the first set of experiments. The second wrapper, developed by Mark

Tomaszewski [15] can stream data from the Myo at a tunable time at a frequency of

200Hz, which is the actual acquisition frequency of the device. This is a compilation

of codes that wraps the C++ bindings of the SDK into a Matlab object, capable of

streaming data in real time in the Matlab environment. Now, we will explain briefly the

function of each step in this data conversion process.

Matlab initialization

Every time a session for data acquisition is to be started, the file MyoMex_Quickstart.m

should be executed, in order to call and compile the previous files and define them

in the current Matlab workspace. Once the MyoMex object has been created, the

streaming can be toggled on and off using a sub function, when its streaming any

Matlab function can run without affecting the flow of data, including the pause()

function. Also relevant properties can be accessed, such as Quaternion, gyroscopes,

accelerometers and EMG data in real time. Also, logs for each property is created

when the streaming start, which concatenates the received data until we use a sub

function to clear the logs. Logs can be accessed at any time, and will show the

current accumulated data.

After this code has allowed the creation of the temporary MEX file, it will run a short

data acquisition test for a few seconds, to verify that everything is working correctly.

Plotting the acquired values of the 3DOF gyroscopes, the 3DOF accelerometers and

the raw EMG signals of the 8 pods overlapped, as shown in the following figure.

Figure 13 – Gyroscopes, Accelerometers and EMG signals. Myo detecting “Fist” pose

Source: Author

Overlapping the figure generated, we can see the result of the Myo’s built in classifier.

That figure will print in real time any pose detected by the device, as long as the

program Myo armband manager is running.

27

After the placement of the Myo armband, and the Matlab initialization. The acquisition

and labeling script MyoMex_mexbuilt.m will create a MyoMex object, and require a

movie file, which is a .mat file, containing a sequence of images that execute as a

visual guide for the pose we wish to record. The movie will repeat in a loop in cycles

in an attempt to synchronize the patient with a guideline, by using a sound cue that

indicates when the pose should be performed; this will repeat itself for 5 cycles. After

the 2nd cycle, the data stream from the Myo will be activated and the recording will

start, this means at least 3 poses will be recorded per recording session.

For the first experiments, while using the first Matlab wrapper, the data was acquired

at a rate of 10Hz for a fixed time of 10 seconds, leading to fixed matrices of size

100x8 where the columns represent each channel and the rows were 100 observations.

For the second Matlab wrapper used, the frequency was 200Hz, meaning the amount

of samples generated will be 200 times more than the time spent recording. For the

sake of speed, no real time graphs are generated during the data acquisition, and

the data logs will only be checked once the streaming is turned off. The data is

stored in a matrix of variable size, with 8 fixed columns containing the EMG value of

each POD at a given moment of time, and the number of rows will represent the

amount of observations or samples.

4.1.5 Labeling

After the data acquisition is finished, a plot will appear with the overlapped EMG

signals of the recorded session, and an interactive labeling system will execute

automatically, where the user will see a black cross following the mouse cursor and

can click in the graph where the pose transitions happened (figure 14). After clicking

all transitions, pressing ENTER in the keyboard will pop messages in Matlab’s command

window displaying the sections defined by the transitions previously clicked, and asking

to manually assign a label for each one of them.

Figure 14 – Interactive labeler, and signal samples for several poses.

Source: Author

From left to right, the signal sections that present activity correspond to “Fist”, “Wave

Right”, “Wave Left”, “Spread Fingers”, “Elder” and “Voor” poses. As we can see in the

image, it’s easily differentiable when a pose is being executed from the general resting

position.

The poses selected for the tests and the chosen labeling code is expressed in the

following figure and table, where we can see a number and a color assigned to each

pose. The numbers are used by the subsequent codes to identify the poses, while

the color codes are meant as a visual guide for the user when the scores of the

PCA are plotted. The latter will be deeply explained in section 4.2.4.

29

Figure 15 – Hand poses used in the experiments.

Source: Author

Pose Color code for PCA Label

Rest Cyan 1

Fist Blue 2

Wave Left Green 3

Wave Right Red 4

Spread Fingers Magenta 5

Pinch Black 6

Elder Red Cross 7

Voor Blue cross 8

Tiger Black cross 9

However, when we release especially stressful positions like Fist or Wave Out, there

is a second set of EMG readings (Figure 16) we must be careful not to label as the

originally intended pose.

Figure 16 – “Fist” sample signal, releasing pose signals pointed with red markers

Source: Author

It is noticeable that this releasing EMG are not considered part of the pose by the

built in classifier of the Myo, since whenever you release the pose it is immediately

detected. It was learned empirically during this work how the accuracy of the classifiers

would decrease if we fail to label as Rest (or some Transition) pose this second set

of EMG signals.

After the data is labeled, a vector with the same length than the EMG current readings

will be stored in a Matlab structure containing independent slots for both the raw

EMG of data and the label. Then, the user should provide a name in the command

window, and the Matlab structure will be saved as a .mat file in the data/train

subfolder.

The previous process is the protocol for acquiring new data samples, and it was

repeated several times for each pose. Whether it’s training or testing data, the

acquisition process will be basically the same. However, the labels will play different

roles in the code if they are meant to be training or testing data; if the data is

meant for training a new classifier, the labels will define a class for each observation.

But if the new data acquired is meant for testing, the labels are used for defining

the ground truth of the classifiers and calculating the accuracy as it will be defined

in section 4.3.5.

31

4.2 Data preprocessing

All recorded .mat files should be saved by default in the same folder, in order to be

compiled by the code gatherProcessNTrain.m which is responsible for gathering all

available data, preprocessing, model training and storage. Now we will describe in

general terms what is inside the code and their purpose.

4.2.1 Gather and concatenate all available data

Once the code is executed, the user will be asked to select a folder containing the

training data, it should be the data/train subfolder. The program will load and

concatenate all data files, creating a matrix with the same 8 columns for the EMG

readings and a row number equal to the summatory of the recorded samples of all

the loaded files. In the same way, a single vector will concatenate the corresponding

labels for each observation.

In some classifiers like KNN, the testing of new data will require to compute each

new sample against the whole training set. Thus becoming computationally expensive

when the training data set is too big. Having this in mind, most of the experiments

were done with rather non abundant data, in order to reduce the testing phase

computational time.

4.2.2 Windowing

Given the stochastic nature of the EMG readings, we can’t expect to extract too much

information from the samples alone. Therefore, some windowing or smoothing

technique is required for calculating additional features from a small set of data [17].

In general, the window size is related to the data length and the number of training

samples (windows), as shown in the following equation:

Selecting smaller window increments than the window size will lead to overlapping

windows, which has been demonstrated to have better classification performance, than

a disjoint window scheme [18], where the window size is equal to the window

increment. For this work we chose to use the disjoint window scheme, since is

computationally cheaper than the overlapping one.

In the literature, the requirements for real-time applications, like control of prosthetics

or virtual avatars, define the window length to be smaller than 300ms [17]. We chose

a window size of 5 samples at a frequency of acquisition of 200Hz, the window length

in time is of 25ms, satisfying the proposed condition. On the other hand, since there

is a label associated to each observation of the raw EMG signal, we will determine

the label of an entire window by a majority vote of the labeled samples inside a

window. Therefore, if the window size was higher, windows allocated in the transitions

between poses would create misleading information for the classifier.

4.2.3 Features of EMG

After the window size is set, the concatenated data will be separated in windows, and

we will calculate various features that can be extracted from the EMG raw data, each

giving additional information of the muscle behavior. Some of them extracted from

the magnitude variations of the signals, and some calculated from the frequency of

certain changes. There are many different features which are very useful for training

a classifier, but we will only mention those used in our study [12]. The calculated

features for each window will be stored in a single vector, concatenating the features

of all the pods.

4.2.3.1 Integrated EMG (IEMG)

Describes the EMG signal sequence firing point, as onset detection index of muscle

activity. It’s defined as a summation of absolute values of the EMG signal amplitude,

which can be expressed as:

𝐼𝐸𝑀𝐺 = ∑ |𝑋𝑖|
𝑁

𝑖=1

Where Xi represents the EMG signal in a segment i, and N refers to the length of

EMG signal.

4.2.3.2 Mean Absolute Value (MAV)

Can be used to detect muscle contraction levels. It’s defined as an average of

absolute value of the EMG signal amplitude in a segment, expressed by the equation:

𝑀𝐴𝑉 =
1

𝑁
∑ |𝑋𝑖|

𝑁

𝑖=1

4.2.3.3 Simple Square Integral (SSI)

Uses the energy of the Motor Unit Potentials as a feature, it can be defined as the

summation of the squared absolute value, as follows:

𝑆𝑆𝐼 = ∑ 𝑋𝑖2
𝑁

𝑖=1

33

4.2.3.4 Variance of EMG (V)

Represents how signal varies from its average value with a statistical measure, also

expressing the power of a single EMG reading, it’s defined as follows:

𝑉 =
1

𝑁 − 1
∑ (𝑋𝑖 − 𝑀)2

𝑁

𝑖=1

Where M is the mean value of the signal, defined in a similar way as the MAV, but

without the absolute value

4.2.3.5 Root Mean Square (RMS)

This feature represents the mean power of the EMG signal and it’s related to the

constant force and non-fatiguing contraction of the muscle, RMS is defined as follows:

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑋𝑖2

𝑁

𝑖=1

2

4.2.3.6 Waveform Length (WL)

This feature represents the cumulative length of the EMG signal waveform over the

time segment, or in other words WL is a measure of EMG signal complexity, relating

the waveform amplitude, frequency and time, it’s described by the equation:

𝑊𝐿 = ∑ |𝑋𝑖+1 − 𝑋𝑖|
𝑁−1

𝑖=1

4.2.3.7 Zero Crossing (ZC)

This feature represents the number of times the amplitude of the EMG signal crosses

the 0 axis, giving an insight in the frequency of the analyzed signal fragment, it can

be formulated as follows:

𝑍𝐶 = ∑ 𝑠𝑔𝑛(𝑋𝑖 ∗ 𝑋𝑖+1)
𝑁−1

𝑖=1

Where

4.2.4 PCA

After all the features have been calculated for each window for all the pods, a matrix

will be generated. Where the columns are represented by the vector containing the

features of each window in each pod, and since we calculated 7 features per pod,

and we have 8 pods, we will have 56 columns. And the rows will be the observations,

whose number depends on the length of the data acquired.

For the generated matrix, we calculate the Principal Component Analysis (PCA), using

the pca function in Matlab. PCA is a multivariate statistics algorithm, performing data

orthogonal transformation converting a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables [17]. New variables are

called Principal Components (PCs), and they have a dimensionality as big as the

number of features provided to the PCA algorithm, this means we will have a score

with 56 dimensions. We will use only 3 components for visualizing the data in 3D,

and the whole 56 PCs for training different classifiers.

The following figure shows how just 3 components of the PCA are very helpful to

realize the clustered projections of different poses.

Figure 17 – 3D PCA scores of basic dictionary with acquisition frequency of 10Hz

Source: Author

35

4.3 Modeling

Using the calculated scores and the labels for each window, we can create training

data suitable as an input of different kinds of models and classifiers. As mentioned

before, training and testing data are acquired and labeled in the same way, therefore

we must clarify a distinction between them.

In general, training data is a compilation of several files containing many repetitions

of all the poses we wish to train the classifier with. And testing data will be just two

repetitions of each pose, recorded in different files than those used for training the

classifiers.

In the following section we will describe briefly the principles behind each classifier

and the definitions of accuracy created to measure the experiments made for each

one of them.

4.3.1 Decision Trees

Decision tree learning is a method for representing data in form of if-then rules for

approximating discrete-valued target functions. The decision tree representation sorts

data down from the root of the tree, through branches corresponding to a discrete

division of the possible values of the attribute. From the branches, nodes in the tree

represents an attribute of the data, until finally leaf nodes provide classification of

the data [19].

In Matlab, the function fitctree can generate a decision tree classifier, taking as input

a table of values with features in the columns and observations in the rows, and a

vector of labels or classes corresponding to each observation. This function returns

a binary tree, where each branching node is split based on the provided features.

Additionally, some other parameters can be defined in the Matlab function, such as

minimum number of node observations, or maximum number of splits and the cost

of misclassification, among many other customizable options to fit the classifier to

specific needing [20].

4.3.2 Random Forest

Random forests combine the predictions of several decision trees, as the ones

described in the previous section. Each of the trees is trained in isolation and

combined using a weighting scheme through averaging. The construction of the tree

is parameterized by the minimum number of estimation points in each leaf, indicating

the minimum leaf size.

At each point in the construction of the tree, a leaf is selected at random for

expansion as long as there exists a candidate that doesn’t create any children with

fewer leafs than defined by the minimum leaf size. If there is no such candidate at

the expanding point, the expansion stops [21].

In Matlab, we can create a Random Forest classifier using the function TreeBagger,

which takes as input the number of decision trees, a table of values with features in

the columns and observations in the rows, and a vector of labels or classes

corresponding to each observation. This function returns an ensemble of the decision

trees used for the model training. The minimum leaf size can be defined as an

optional function of the function, just as the cost of a misclassification and some

other functions [22].

4.3.3 Error Correcting Output Codes (ECOC)

ECOC is a method for decomposing a multiway classification problem into several

binary classification tasks, each removing some uncertainty about the correct input

class. Then a voting scheme will decide by the combination of the results an estimated

solution for the original problem [23].

In MATLAB, this classifier is trained using the function fitcecoc, fed with a matrix of

observations and attributes treated with PCA, and a vector with the unique

corresponding labels [24].

4.3.4 K Nearest Neighbors (KNN)

Let’s imagine a training data set with known labels for each observation, if we consider

each characteristic or feature of the observations in some space, an observation of

such features will project a coordinate in that dimension. Therefore, we can consider

some kind of distance between different data points under some appropriate metric,

and cluster the observations whose distance with neighboring observations is small.

A KNN classification algorithm would estimate the class or label of a new observation

by performing a majority vote of the classes of the K nearest neighbors, where K is

a positive integer and it’s usually small. For our particular case, each class in the

feature space is not clustered in a compact way, and the classes tend to overlap

leading to the misclassification of some of the data points. There are many ways to

make KNN more robust, such as assign a weight to the contributions of the neighbors,

or even defining a weight for different labels, which is useful when there is an

overabundance of some class data. Also, defining the weight in relation to a relative

distance, meaning that the nearer neighbors contribute more to the voting than those

far away [25].

In Matlab, a KNN classification model can be created with the function fitcknn, which

takes as an input the matrix of predictor values, meaning the result of the PCA

performed to the features extracted from the windows of each EMG source. Another

37

input to the function is the vector of classification, which is the label vector we create

manually for each training sample. Additionally, some other parameters can be tuned

in the Matlab function, such as Weights defining a vector with a specific weight for

each observation, or NumNeighbors which is K, and DistanceWeight for defining a

weight related to the distance of the neighbor for a particular sample, among many

others [26].

4.3.5 Accuracy definition

4.3.5.1 A1

The accuracy of the classifiers was calculated based in the classifier’s prediction

against the label created for the testing data (ground truth), defining the accuracy

from the number of correctly classified observations according the next equation.

𝐴1 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
) ∗ 100

4.3.5.2 A2

After performing some experiments, we realized the overabundance of the “Rest” pose

in the data sets stated a problem, which is the inflated accuracy of the classifier

given the correct classification of the “Rest” pose with respect to the other poses.

Therefore, a new accuracy was defined excluding the “Rest” pose from the manual

label, and the incorrect classification of “Rest” from the classifier’s results. The new

accuracy A2, will give a better insight of the classifier’s results and is calculated

according to the following equation.

𝐴2 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐿𝑎𝑏𝑒𝑙𝑒𝑑"𝑅𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 − 𝑀𝑎𝑛𝑢𝑎𝑙𝐿𝑎𝑏𝑒𝑙𝑒𝑑"𝑅𝑒𝑠𝑡 − 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐿𝑎𝑏𝑒𝑙𝑒𝑑"𝑅𝑒𝑠𝑡
)

∗ 100

4.4 Post processing

During the experimentation with the 2nd Matlab wrapper, it was noticed that the nature

of misclassification was anatomically impossible, since the classifier’s results were

noisy. Such results were suggesting the patient was switching from one hand gesture

to another, and then jump back to the original pose in 2 samples, which is

anatomically impossible for a human in 5ms (acquisition frequency of 200Hz). This

scenario presented the possibility of performing some kind of low pass filtering to the

classification results.

4.4.1 Sliding window filter

Due the nature of the misclassification, it is possible to filter the anomalies with a

sliding window and a majority vote. This was developed from the codes used to

separate the data in windows and a similar process as the one used previously for

determining the label of a window by majority vote. In the next set of graphs we can

appreciate the sliding window size influence in the results. The accuracies obtained

for each window size can be seen in the subsequent table.

Figure 18 – Filter window size influence in classifier’s results

Source: Author

39

Filter Window

size

Accuracy Graph Index

A1 A2

1 74.4262 69.1344 A

3 81.6393 76.6515 B

5 86.1475 82.2323 C

8 84.6721 81.6629 D

10 88.1967 86.7882 E

14 92.2951 92.4829 F

20 90.6557 87.9271 G

Despite looking better with an increasing window size, there is not a linear relationship

between the filter window size and the resulting accuracy, and after some number

further increasing the window size will only decrease the accuracy. Therefore, the

filtering algorithm will be improved into an iterative one, maximizing the accuracy and

exhausting all possibilities in order to get the best results.

4.4.2 Maximizing accuracy

As mentioned before, the accuracy and the window size of the filter will vary according

the results of each classifier. Through experimentation it was determined that in

general, a window bigger that 40 would only decrease the accuracy. Therefore an

iterative loop from 5 to 40 will calculate the accuracies A1 and A2 and store the

filtered results for the highest A2 accuracy, keeping record of the calculated filter

window size

5 Experimental Results

5.1 Experiments with 1st Matlab wrapper, acquisition at 10Hz

The purpose of the first set of experiments was to determine empirically the best

classifier from those selected for our particular application, and the right parameters

to achieve a robust classifier. In order to achieve this, a huge data set was recorded

in a single session for the analysis of these experiments. These first results were

achieved with an acquisition frequency of 10Hz, considerably inferior to the 200Hz

frequency of future experiments.

Each one the Training data batches presented in the following tables correspond to

an entire file with 100 samples, where experiments were separated in sets of 2500,

2800, 3000 and 4000 samples (25, 28, 30 and 40 Training data batches respectively).

In general, the tables will show the accuracy achieved by the classifier under different

conditions or parameters.

All the experiments in this section were performed on the same testing data, acquired

separately from the training data. The testing data consist of two data batches per

pose, resulting in 1000 samples containing two repetitions for each pose in the base

dictionary of the Myo armband’s classifier. If new poses are to be tested, two additional

data batches will be concatenated to this initial testing data.

5.1.1 Decision Tree

The following table shows the accuracy A1 of the classifier on the testing data,

against the amount of training data used to train the model. All the models are

applied in the same testing data with a window size of 5, in order to hold a relation.

Train data batches A1

25 76.25

28 77.5

30 76.25

40 76.25

5.1.2 Random Forest

In this table we can appreciate how an incremental number of train data batches is

not directly related to the improvement of the classifier. However, since the accuracy

of the random forest is the result of the average of the independent decision trees

we can see how an incremental number of trees has a positive influence in the

classifier’s overall accuracy, since the depth of the trees is related to the minimum

leaf size, which is also related to the size of the training set.

Train data batches \ N. of trees 2 4 6

25 51.875 64.375 69.375

30 70 71.25 81.875

40 64.375 79.375 80

The next table shows the relation between the minimum leaf size and the number of

samples for a fixed number of trees of 6.

Train data batches \ Min Leaf size 2 4 5

25 69.375 75 69.375

30 78.125 76.25 81.875

40 71.25 75 76.25

It’s worth mentioning that whether the accuracy in general seems inferior to the one

achieved by the classifier with minimum leaf size of 1 (which is the default), the

accuracy for detecting the poses increased while the correct classification of the

“Rest” pose decreased.

41

5.1.3 Error Correcting Output Codes (ECOC)

The ECOC model shows increasing accuracy in relation to the amount of training

data. But in comparison with the other classifiers, this is the less effective classifier

and will be discarded for future experiments.

Train data batches Accuracy

25 62.5

28 63.125

30 69.375

40 71.875

5.1.4 K Nearest Neighbors (KNN)

The following table shows the accuracy of the classifier, illustrating the relation

between the amount of training data and the K nearest neighbors used to train the

model. As well as the previous models, this ones are applied in the same testing data

with a window size of 5, in order to hold a relation.

Train data batches \ K 1 3 5 10

25 78.75 80.625 81.875 81.25

28 84.375 83.75 86.25 86.875

30 88.125 85 85.625 88.125

40 89.375 89.375 90 90

For the 40 train samples, an additional measurement was taken with K=15, resulting

in an accuracy of 88.125, this decrease is attributed to the occasional overlapping

of data between “Wave Left” and “Spread Fingers” poses, since they involve similar

muscle behavior.

From the previous experiment we could define the future data acquisition with a fixed

K=10. However, as new poses are introduced in the dictionary of the classifier, the

chances of overlapping data between the new poses are high. Thus a K=5 will be

used for future model trainings.

5.1.5 KNN: Using new accuracy A2 and modifying the weight of “Rest” pose

There is a drawback for the majority voting strategy, since examples of the most

frequent class “Rest” tend to dominate the prediction of the new examples, due to

its overabundance in the data sets. This also states an additional problem, which is

the inflated accuracy of the classifier given the correct classification of the “Rest”

pose with respect to the other poses.

In order to solve these problems, we will take 2 approaches. First we will use the

weight parameter in the Matlab function, assigning an almost neglectable weight to

the “Rest” labeled neighbors, to reduce the impact of the overabundance of this class.

In the following table we can appreciate the comparison of the suggested approaches

in the results of the 5 KNN classifier, where A1 is the overall accuracy of the classifier,

and A2 is the accuracy calculated without taking into account the “Rest“ pose

influence.

Weight of Rest 1 0.8 0.5

Train Samples A1 A2 A1 A2 A1 A2

25 81.875 68.254 82.5 69.841 81.25 71.428

28 86.25 73.015 86.25 74.603 86.25 76.19

30 85.625 71.428 85.625 74.603 83.75 74.603

40 90 84.127 90 85.714 88.125 87.301

5.1.6 KNN: Expanding the dictionary

A new pose “Pinch” was introduced as training data for the classifier with 5 nearest

neighbors, using the previous 40 batches of train data plus 5 more with information

about the new pose. As expected, the accuracy A1 of the new model decreased from

90 to 83.75. However, our Matlab algorithm provides detailed information about the

misclassification, allowing us to know which poses are misclassified and what was

their wrong result.

Then, we created additional training data for the poses creating the misclassification,

resulting in the accuracy A1 improving from 83.75 to 85.625 with 3 new data batches,

thus validating the strategy. However, we need to be careful since introducing a

mislabeled data batch can catastrophically affect the accuracy of the classifier.

5.2 Experiments with 2nd Matlab wrapper

As stated previously the frequency of acquisition for the new wrapper will be of 200Hz,

meaning the amount of samples per data file will increase significantly and won’t have

a fixed size, therefore the tables will state the number of total samples, rather than

the data batches presented before for training and testing the classifiers.

In a similar way as before, training and testing data was created separately. For all

the experiments using the 2nd Matlab wrapper we will have a single file for the testing

data, containing 2 repetitions of each pose of the base dictionary. When new poses

are to be tested, new files containing two repetitions of each additional pose are

concatenated to the original base dictionary.

In this second set of experiments, we will separate the experiments per acquisition

sessions. Since as it was stated before, training and testing data should be acquired

in the same session without removing the Myo armband.

43

5.2.1 1st Session, facing 200Hz and post processing

The first issue to be noticed after switching the acquisition frequency from 10Hz to

200Hz was visible after the PCA was done. The new data was significantly more

abundant and scattered along the PCA 3D graph than for previous experiments,

overlapping more often between classes than before. Nevertheless, it’s still visible

some form of cluster for each pose, thus making the 3D PCA graph still valuable for

considering new poses.

Figure 19 – 3D PCA scores of basic dictionary with acquisition frequency of 200Hz

Source: Author

In the following table, we will evaluate a KNN classifier with 5 nearest neighbors, in

order to state a comparison with the results obtained with the 1st Matlab wrapper. As

we can see, it has a significantly lower accuracy than previously achieved, even with

a huge abundance of observations available.

Weight of Rest 0.8 0.5

Total Samples A1 A2 A1 A2

20052 58.8525 45.7859 61.254 49.8644

39786 71.9672 64.4647 73.9344 67.9954

64486 72.9508 66.2870 74.4262 69.1344

In the following picture we can see in the upper graph, the ground truth defined by

the manual label created for the testing data, the lower graph shows the result of

the classifier trained with 64486 samples and “Rest” weight of 0.5. The X axis

represents the observations, while the Y axis represents the labels.

Figure 20 – KNN: Ground truth VS raw classification

Source: Author

When analyzing the data, it was noticed that the nature of misclassification was

anatomically impossible. Meaning it’s not anatomically possible to switch from one

hand gesture to another, and then jump back to the original pose in a single sample.

Which is graphically described as the spikes in the classifier’s results.

It was during this experimental session we realized the suitability of post processing

the data with a low pass windowing filter; this process was presented carefully in

section 4.4.1.

5.2.2 2nd Session, evaluating previous models for new poses

In this session, there were two main objectives; the first one was to determine which

new poses could fit the previous dictionary without affecting too drastically the

accuracy, and the second objective was to determine which model was better for

expanding the dictionary.

Independent models were created for training and testing each of the new poses and

similar parameters will be tuned for each classifier as those shown for the first Matlab

Wrapper, however emphasis will not be made in the number of samples, but with the

interaction between the Base set of poses (Fist, Wave Left, Wave Right and Spread

Fingers), and the additional 4 poses we wish to evaluate. In addition, the results

shown in tables will already have the sliding window filter applied. Only a graph of

the best case for each classifier will be shown for the sake of space, to give the

reader a graphical insight in the classifier’s and post processing results.

45

5.2.2.1 Random Forest

Let us remember that A1 stands for the accuracy of the classifier, counting the “Rest”

position as a correct classification, and A2, the same measurement without taking

that pose into account. Having this in mind we can realize that the best classification

results are those which A1 and A2 are both high.

Number of trees 2 4 6

Poses A1 A2 A1 A2 A1 A2

Base 79.6460 70.0627 90.0688 85.5799 90.0688 87.3041

Base+Pinch 67.6774 42.002 73.6129 53.602 74.3871 55.3114

Base+Tiger 70.2128 50.4695 82.7853 73.1221 84.0748 75.8216

Base+ Elder 73.5313 52.7228 78.5023 66.2129 80.1162 65.7178

Base+Voor 65.4616 42.6802 80.6972 69.2568 81.8593 73.7613

So far the only promising poses appear to be Tiger and Voor, the other 2 introduce

too much confusion into the classification of the Base poses, since they involve similar

muscular and mechanical behaviors into the arm. Now we will modify the minimum

leaf size, which defines the depth of the trees, for a fixed number of trees of 6.

Min Leaf size 1 4 7

Poses A1 A2 A1 A2 A1 A2

Base 90.0688 87.3041 93.4120 91.6928 92.7237 91.3793

Base+Pinch 74.3871 55.3114 75.2903 56.4103 79.0968 64.2247

Base+Tiger 84.0748 75.8216 86.9117 81.9249 87.6209 81.3380

Base+Elder 80.1162 65.7178 89.0252 84.7772 83.9897 73.2673

Base+Voor 81.8593 73.7613 86.3138 87.1622 87.6049 84.9099

Base+Tiger+Voor 69.8512 46.0073 72.6356 54.9909 76.6683 62.2505

Base+ Elder +Voor 84.1903 77.5992 89.9087 85.5388 90.8698 87.3346

It’s remarkable how the pose “Elder” was only detectable under the minimum leaf size

of 4, in any other conditions it would affect negatively the classification of base poses

and it couldn’t be detected by the classifier. In the following figure we can appreciate

how the “Elder” pose (label 7) affects the base dictionary, and how the post processing

improves the noisy results.

Figure 21 – Random Forest: testing base dictionary plus “Elder” pose

Source: Author

Additionally, we tried to add 2 new poses into our Random Forest, relating those

poses which got the best results for expanding the base dictionary. In the following

figure, we can see the results for the classification of the base dictionary in addition

to the poses “Voor” and “Tiger”.

Figure 22 – Random Forest: testing base dictionary plus “Voor” and “Tiger” poses

Source: Author

47

We can see how the introduction of the “Tiger” pose introduce a drastic increase in

the misclassification of the base dictionary, and the pose “Tiger” is unrecognizable.

Suggesting these two poses are not especially compatible in the dictionary expansion.

In the following figure we can see how the base dictionary was expanded with “Voor”

and “Elder” poses, without compromising too much the classification of the original

poses, and allowing the classification of “Elder” in some grade.

Figure 23 – Random Forest: testing base dictionary plus “Voor” and “Elder” poses

Source: Author

5.2.2.2 Error Correcting Output Codes (ECOC)

For the correct classification of the ECOC using the Matlab function, the class names

must be provided inside the function, aside from the vector containing the labels of

the training data. The following table summarizes the influence of each pose into the

base dictionary.

Poses A1 A2

Base 90.4621 91.2226

Base+Pinch 82.6452 72.8938

Base+Tiger 86.0735 85.3286

Base+ Elder 78.825 74.7525

Base+Voor 82.1175 83.6712

Base+Tiger+Voor 74.94 58.9837

5.2.2.3 K Nearest Neighbours (KNN)

Based on our previous experiences with overabundance and diversity of the “Rest”

pose samples, we will modify K for using fixed weight of 0.5 for every sample labeled

as Rest.

Number of

neighbors

3 5 10

Poses A1 A2 A1 A2 A1 A2

Base 88.9872 89.4984 86.2340 86.0502 89.8722 90.7524

Base+Pinch 75.5484 64.9573 78.7097 65.812 76.1935 62.5153

Base+Tiger 87.7498 90.7277 82.334 73.5915 81.109 73.7089

Base+ Elder 83.6023 73.2673 81.3428 79.5792 83.5378 80.4455

Base+Voor 89.7353 92.3423 92.1885 92.9054 93.0278 93.1306

Base+Tiger+Voor 74.988 59.4374 72.8757 54.9909 76.5242 61.9782

Base+Pinch+Voor 83.8617 79.7007 82.2286 73.1525 84.4861 77.7362

Base+ Elder +Voor 90.2451 87.3346 89.7645 91.3989 88.3229 88.5633

In the following figures we can see the results marked in the table, showing an

outstanding compatibility between the “Voor” pose and the Base dictionary. And the

only compatibility between 2 additional poses to the base dictionary, “Voor” and

“Elder”.

Figure 24 – 10 Nearest Neighbors: testing base dictionary plus “Voor”

Source: Author

49

Figure 25 – 5 Nearest Neighbors test: base dictionary plus “Voor” and “Elder” poses

Source: Author

We can appreciate in the figure the successful classification of the base dictionary

with 2 additional poses, and the significant improvement of post processing the data.

6 Conclusions and future work proposals

We successfully have learned the principles of electromyography behind the functioning

of the Myo armband, as well as its SDK, whose communication protocols enabled

data stream for processing in Matlab. Additionally, we learned and implemented signal

processing and feature extraction techniques, needed to extract valuable information

from the stochastic EMG signals.

Extensive data acquisition sessions were performed in order to record many different

hand poses, and all data was manually labeled in order to train and test different

classifiers. It was necessary to be extremely careful during the manual labeling of the

samples, since mislabeled data would affect terribly the results of the classifier.

Several classifiers were explored through experimentation: Decision Trees, Random

Forests, ECOC and KNN were tested, and their parameters modified in order to

reproduce the ability of the Myo armband of classifying a set of basic hand poses,

and later expanding the dictionary.

The system developed was compared to the Myo armband’s software by graphical

cues, since the software of the device doesn’t provide directly the results of the built

in classifier, but rather prints the detected pose in the screen in real time. Therefore,

a special way of determining the accuracy of the classifier was proposed by making

a general comparison between the results of the used classifier against the manual

labeling of the testing data.

However, in our experiments the “Rest” position had an overabundance of samples in

both the training and testing data sets, thus having a huge impact in the accuracy

calculations, since “Rest” was defined as a pose too. Therefore, a second accuracy

was defined for the pattern recognition algorithms, excluding the non-recognizable

and idle patterns from the overall accuracy, to give a precise insight about the

classifiers behavior.

Given the stochastic nature of the EMG signals and their subsequent features, the

classifier’s results were always very noisy. But, when analyzing the data, it was noticed

that the nature of misclassification was anatomically impossible. Meaning it’s not

possible to switch from one hand gesture to another, and then jump back to the

original pose in subsequent samples at 200Hz. Therefore, it was possible to filter the

anomalies using processes implemented in previous tasks, such as a sliding window

filter and a majority vote.

The sliding window filter enhanced the classifier’s results in an outstanding way.

However, each case would require a different window size to achieve the best possible

results, and there was no linear relationship between the window size and the

improvement of the accuracy. Therefore, enhancing the filter with a maximization

algorithm allowed the automatic optimal filtering for each experiment.

51

However there is a drawback on the current filter approach, since the average window

size of the filter throughout the classifiers was 18, and the window size of the EMG

signals last 25ms; this means the fastest classification time our algorithm can perform

for optimal accuracy takes at least 450ms. Let’s remember that the requirements for

real-time applications, like control of prosthetics or virtual avatars, define the refresh

rate to be smaller than 300ms [17]. Proving that so far, our classifier is not ready

for real-time applications.

For expanding the vocabulary of gestures of our classifier we needed to explore hand

poses that involved different sets of muscles than those of the base dictionary,

otherwise a new pose would introduce misclassification errors to the poses previously

learned. This means some anatomical knowledge of the arm’s mechanisms was

required to define the ideal additional poses. However, there was no physical formation

of the author allowing to define such poses. But, the 3D visualization of the PCA

scores allowed some insight in the same principles required for defining a new pose.

As shown previously, each sample from each pose would have a projection in the 3D

PCA graph, allowing to determine graphically new hand poses that were essentially

different from those learned already.

The procedure we just described for learning new poses grew more and more

complicated as we were able to introduce new poses to our dictionary, since every

new pose should be compatible with every other pose existing in the dictionary. At

the end we were able to train KNN and Random Forest classifiers, capable of learning

2 additional poses to the base dictionary. Thus satisfying the main objective of this

thesis work.

As it was mentioned at beginning, this work serves as the entrance to deeper and

more natural cybernetic interactions. Now we will suggest to the reader, some possible

future works that could use this document and algorithms, as a starting point.

The principles and procedures presented in this thesis work should be validated in

amputated patients, since the physiological configuration of an amputee will surely

define a unique hand pose dictionary for each of them, and present new challenges

to the classification problem.

Additionally, a control system could be developed to control a hand prosthetic or a

virtual reality interface, powered by the hand poses detected. DARPA has already

proven that you can decode the patient’s intentions to the point of controlling

smoothly each finger of the hand, using Myo armbands, machine learning and some

surgical interventions.

A virtual reality interface or a functional prosthetic decoding the user’s intention would

give sensory feedback to the brain when performing some hand pose. In a recently

amputated patient, this feedback could prevent the reorganization of his PNS, CNS

and brain, and subsequently prevent the development of PLP. Therefore a study could

attempt to quantify the PLP reduction in different patients, at different stages of

cortical reorganization.

We stated previously the importance of correct labeling for training the classifiers. If

we are able to create accurate and complex labels, we could teach some equally

complex gestures to the classifier. This was the main idea behind the glove for

automated accurate labeling presented in the appendix, where the glove will provide

detailed information of any hand current gesture and orientation, and generate a

label for it. The application of this concept wouldn’t be usable in amputees, but has

potential in the development of VR interfaces and enhancement of the Myo armband’s

capabilities for detecting truly complex gestures.

53

7 REFERENCES

[1] Di Pino, G., Guglielmelli, E., & Rossini, P. M. (2009). Neuroplasticity in amputees:

main implications on bidirectional interfacing of cybernetic hand prostheses. Progress

in neurobiology, 88(2), 114-126.

[2] Burck, J. M., Bigelow, J., & Harshbarger, S. D. (2011). Revolutionizing prosthetics:

Systems engineering challenges and opportunities. Johns Hopkins APL Technical Digest,

30(3), 186-197.

[3] DARPA RSS - http://www.darpa.mil/program/revolutionizing-prosthetics

[4] DARPA RSS - http://www.darpa.mil/news-events/2015-09-11

[5] APL's Modular Prosthetic Limb Reaches New Levels of Operability -

http://www.jhuapl.edu/newscenter/pressreleases/2016/160112.asp

[6] Yousefi, J., & Hamilton-Wright, A. (2014). Characterizing EMG data using machine-

learning tools. Computers in biology and medicine, 51, 1-13.

[7] Pan, L., Zhang, D., Liu, J., Sheng, X., & Zhu, X. (2014). Continuous estimation of

finger joint angles under different static wrist motions from surface EMG

signals. Biomedical Signal Processing and Control, 14, 265-271.

[8] Riillo, F., Quitadamo, L. R., Cavrini, F., Gruppioni, E., Pinto, C. A., Pastò, N. C., ... &

Saggio, G. (2014). Optimization of EMG-based hand gesture recognition: Supervised vs.

unsupervised data preprocessing on healthy subjects and transradial

amputees. Biomedical Signal Processing and Control, 14, 117-125.

[9] Boyali, A., & Hashimoto, N. (2016). Spectral Collaborative Representation based

Classification for hand gestures recognition on electromyography signals. Biomedical

Signal Processing and Control, 24, 11-18.

[10] Ramachandran, V. S., & Blakeslee, S. (1999). Phantoms in the Brain: Human Nature

and the Architecture of the Mind. Fourth Estate.

[11] Dietrich, C., Walter-Walsh, K., Preißler, S., Hofmann, G. O., Witte, O. W., Miltner, W.

H., & Weiss, T. (2012). Sensory feedback prosthesis reduces phantom limb pain: proof

of a principle. Neuroscience letters, 507(2), 97-100.

[12] Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009). A novel feature

extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973.

[13] Myo SDK 0.9.0: The Myo SDK -

https://developer.thalmic.com/docs/api_reference/platform/the-sdk.html

[14] GitHub – User: Boyali - https://github.com/boyali/matMYO

[15] Myo SDK MATLAB MEX Wrapper by Mark Tomaszewski:

http://www.mathworks.com/matlabcentral/fileexchange/55817-myo-sdk-matlab-mex-

wrapper

[16] MEX File Creation API - http://www.mathworks.com/help/matlab/call-mex-files-

1.html

[17] Khushaba, R. N., Kodagoda, S., Takruri, M., & Dissanayake, G. (2012). Toward

improved control of prosthetic fingers using surface electromyogram (EMG) signals.

Expert Systems with Applications, 39(12), 10731-10738.

[18] Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for

multifunction myoelectric control. Biomedical Engineering, IEEE Transactions on, 50(7),

848-854.

[19] Decision Tree Learning -

http://www.cs.princeton.edu/courses/archive/spr07/cos424/papers/mitchell-

dectrees.pdf

[20] Fit binary classification decision tree for multiclass classification -

http://www.mathworks.com/help/stats/fitctree.html

[21] Denil, M., Matheson, D., & De Freitas, N. (2013). Narrowing the gap: Random

forests in theory and in practice. arXiv preprint arXiv:1310.1415.

[22] Create ensemble of bagged decision trees -

http://www.mathworks.com/help/stats/treebagger.html

[23] Berger, A. (1999, January). Error-correcting output coding for text classification.

In IJCAI-99: Workshop on machine learning for information filtering.

[24] Fit multiclass models for support vector machines or other classifiers -

http://www.mathworks.com/help/stats/fitcecoc.html

[25] Sutton, O. (2012). Introduction to k Nearest Neighbour Classification and

Condensed Nearest Neighbour Data Reduction. University lectures, University of

Leicester.

[26] Fit k-nearest neighbor classifier -

http://www.mathworks.com/help/stats/fitcknn.html?refresh=true

[27] Xing, K., Yang, P., Huang, J., Wang, Y., & Zhu, Q. (2014). A real-time EMG pattern

recognition method for virtual myoelectric hand control. Neurocomputing, 136, 345-

355.

[28] Clancy, E. A., Morin, E. L., & Merletti, R. (2002). Sampling, noise-reduction and

amplitude estimation issues in surface electromyography. Journal of Electromyography

and Kinesiology, 12(1), 1-16.

55

8 APPENDIX

8.1 MATLAB wrapper code overview

C++ code, myo_mex.cpp

Since this code is the glue between the SDK bindings in C++ and the Mex file required

for parsing the data in Matlab, this code will be responsible of defining the structure

and the thread for streaming the data in the Matlab format for the MEX file [16].

The code will access the hub, which can receive and stream data from up to 2 Myo

devices at the same time, however the second Myo can only stream EMG data, no

orientation data can be accessed from it.

MEX file creation and use

The creation of a .mex file consists in the transformation of a C++ source code into

an executable file, in the code build_myo_mex.m using the mex Matlab function and

a supported compiler for the version of the software used for the compilation, we will

turn the myo_mex.cpp file into the myo_mex.mex64 file.

The MyoMex.m code is the bridge between the Myo SDK and the created MEX file,

creating a Matlab object and calling the C++ code for initializing the data

connection, data flow will start until Myo Connect is terminated. All data coming

from the SDK are queued in a FIFO buffer, while this code calls and fetch new

data, following the Matlab timer schedule

8.2 Glove for automated accurate labeling

Creating an external labeling system can improve drastically the accuracy of the

classifier, as well as the complexity of movements that could be labeled. In order to

develop this idea, a glove was designed for determining the current hand position.

The system was powered by an Arduino NANO, and consisted of 5 flex sensors and

a 6DOF MPU (Measured Position Unit), connected as shown in the following diagram.

Using the Arduino software, the circuit was able to determine the hand and fingers

position, and stream such data through the serial port. The prototype can be

appreciated in the following pictures

57

However, 2 major problems prevented the system to be implemented in the thesis

framework. First it wasn’t possible to prevent the drifting from the 6DOF MPU which

increased with time, and second, the communication between Arduino and Matlab

wasn’t always reliable, introducing constant errors in the labeling process.

Since the glove wasn’t a direct part of the thesis work, its use was discarded.

Nevertheless, we present it here for the record, and hoping to encourage future

readers to continue this approach.

